Cells optimised to produce substance that holds potential to improve ‘healthy ageing’

June 19, 2021

Friday 18 Jun 21A new scientific study published in Nature Catalysis shows that baker's yeast can be designed and optimised to produce polyamines and polyamine analogues for tackling grand challenges in both the health and agricultural sector. The population on Earth is increasingly growing and people are expected to live longer in the future. Thus, better and more reliable therapies to treat human diseases such as Alzheimer's and cardiovascular diseases are crucial. To cope with the challenge of ensuring healthy ageing, a group of international scientists investigated the potential of biosynthesising several polyamines and polyamines analogues with already known functionalities in treating and preventing age-related diseases. Therefore, the researchers instead decided to open their biochemical toolbox and use classical metabolic engineering strategies to engineer the yeast metabolism to produce polyamines and polyamines analogues.

Friday 18 Jun 21

A new scientific study published in Nature Catalysis shows that baker's yeast can be designed and optimised to produce polyamines and polyamine analogues for tackling grand challenges in both the health and agricultural sector.

The population on Earth is increasingly growing and people are expected to live longer in the future. Thus, better and more reliable therapies to treat human diseases such as Alzheimer's and cardiovascular diseases are crucial. To cope with the challenge of ensuring healthy ageing, a group of international scientists investigated the potential of biosynthesising several polyamines and polyamines analogues with already known functionalities in treating and preventing age-related diseases.

 

One of the most interesting molecules to study was spermidine, which is a natural product already present in people’s blood and an inducer of autophagy that is an essential cellular process for clearing damaged proteins, e.g., misfolded proteins in brain cells that can cause Alzheimer's. When people get older the level of spermidine in the blood decrease and dietary supplements, or certain food products are needed to maintain a stable and high level of spermidine in the blood. However, those products are difficult to produce with traditional chemistry due to their structural complexity and extraction of natural resources is neither a commercially viable nor a sustainable approach.

 

Therefore, the researchers instead decided to open their biochemical toolbox and use classical metabolic engineering strategies to engineer the yeast metabolism to produce polyamines and polyamines analogues.

 

“This group of molecules has huge potential in addressing important societal challenges and it seemed logical to try and produce them with the help of biology,” emphasises Jiufu Qin, Senior Researcher at The Novo Nordisk Foundation Center for Biosustainability, DTU.

 

Solid vantage point

Jens Nielsen, Professor at Chalmers University of Technology and CEO at BioInnovation Institute

"We expect that our studies lay the groundwork for fermentation-based manufacture of diverse polyamines and polyamine analogues to further unlock this field’s potential for pharmacological and agricultural applications"

The team of scientists explored seven biosynthetic routes that synthesises spermidine from arginine or ornithine and by employing flux balance analysis they could estimate the maximum theoretical yield of each pathway.

 

After establishing the most efficient pathway for spermidine and systematically engineering the cellular metabolism of yeast they managed to ultimately reach a production of spermidine at titers 2.3 gram per liter on lab scale. An initial result that proves the potential of utilising nature’s large and diverse reservoir of biochemical tools to push forward products that can meet the challenges of population ageing and a lack of sufficient food supplies.

 

“We expect that our studies lay the groundwork for fermentation-based manufacture of diverse polyamines and polyamine analogues to further unlock this field’s potential for pharmacological and agricultural applications, “says Jens Nielsen, Professor at Chalmers University of Technology and CEO at BioInnovation Institute.  

 

But all that glitter is not gold and an obstacle such as low enzyme activity causing feedback regulation and thereby compromising the product yield still needs to be overcome.

 

Hit the nail on the head

Even though the strain might need to be improved further, scale-up towards commercial production is already ongoing since the current titers are deemed sufficient for initialising production.

 

The company Chrysea Labs has been established based on this scientific study and the company has a mission of developing healthy lifespan nutritional interventions by ameliorating the natural occurring anti-ageing mechanism autophagy that recycle the cellular process, which is critical for maintaining cell health, renewal and survival.

 

Since the market is expected to grow in the coming years and only a few competitors are currently present in the field there might be a window of opportunity for Chrysea Labs to be a frontrunner in ensuring healthy ageing. 

 

Read the full study here

The source of this news is from Technical University of Denmark

Popular in Research

Maxine Waters Slams Biden For Treatment Of Haitian Migrants: ‘Worse Than What We Witnessed In Slavery’

Sep 23, 2021

Two Haitian migrants bite ICE officers on deportation flight

Sep 23, 2021

U.S. to ease travel restrictions for foreign visitors who are vaccinated against Covid

Sep 22, 2021

After years of being 'squeaky clean,' the Federal Reserve is surrounded by controversy

Sep 18, 2021

Taking on the stormy seas

Sep 23, 2021

Cambridge researchers elected Fellows of the Royal Academy of Engineering

Sep 23, 2021