NYU and University of Copenhagen Team Up to Work Toward Superconductor and Semiconductor Materials for Quantum Computing

October 20, 2024

Under this new collaboration, NYU’s Center for Quantum Information Physics (CQIP) and the University of Copenhagen’s Novo Nordisk Foundation Quantum Computing Programme (NQCP), part of the Niels Bohr Institute, will explore the viability of superconductor-semiconductor quantum materials. “We are excited to join forces with our colleagues at NQCP to study semiconductor and superconductor materials development to provide a direct path for the production of quantum chips,” says NYU Physics Professor Javad Shabani, director of CQIP. Therefore, we welcome this cross-Atlantic collaboration with CQIP, where the team has deep experience in studying these hybrid systems.”The future of quantum computers depends on the development of full-scale quantum chips. Quantum computing can make calculations at significantly faster rates than can conventional computing. This is because conventional computers process digital bits in the form of 0s and 1s while quantum computers manipulate quantum bits (qubits) to tabulate any value between 0 and 1—through a process known as entanglement—exponentially lifting the capacity and speed of data processing.

New York University’s Center for Quantum Information Physics and the University of Copenhagen’s Niels Bohr Institute have established a collaboration to develop superconductor and semiconductor materials, which could be used to enhance performance of electronics, quantum sensors, and computing capabilities, for manufacturing.

Under this new collaboration, NYU’s Center for Quantum Information Physics (CQIP) and the University of Copenhagen’s Novo Nordisk Foundation Quantum Computing Programme (NQCP), part of the Niels Bohr Institute, will explore the viability of superconductor-semiconductor quantum materials.

“We are excited to join forces with our colleagues at NQCP to study semiconductor and superconductor materials development to provide a direct path for the production of quantum chips,” says NYU Physics Professor Javad Shabani, director of CQIP.

“Our mission at NQCP is to enable the development of fault tolerant quantum computing for life sciences, and as a part of the program we are looking at different paths to building quantum processor hardware,” adds University of Copenhagen Professor Peter Krogstrup, CEO of NQCP. “One promising direction for compact and high-speed quantum processing is based on hybrid semiconductor-superconductor materials. Therefore, we welcome this cross-Atlantic collaboration with CQIP, where the team has deep experience in studying these hybrid systems.” 

The future of quantum computers depends on the development of full-scale quantum chips. Quantum computing can make calculations at significantly faster rates than can conventional computing. This is because conventional computers process digital bits in the form of 0s and 1s while quantum computers manipulate quantum bits (qubits) to tabulate any value between 0 and 1—through a process known as entanglement—exponentially lifting the capacity and speed of data processing.

However, such potential has yet to be realized. In solid-state platforms (those based solely on semiconductors), this is, in part, due to challenges incorporating superconductivity—carrying electricity in an energy-efficient way—into semiconductors—the microchips and integrated circuits at the foundation of today’s electronic devices.

The successful development of superconductor-semiconductor quantum materials could lead to the speeding up of calculations, the creation of new quantum circuit functionalities, and generating ways to integrate these breakthroughs with complementary metal–oxide–semiconductor (CMOS) processes used in building energy-efficient microprocessors, memory chips, image sensors, and other technologies.

N-141

The source of this news is from New York University

Popular in Research

Presidential Debate TV Review: Kamala Harris Baits Raging Donald Trump Into His Worst Self In Face-Off

Oct 21, 2024

Impact of social factors on suicide must be recognised

Oct 21, 2024

Print on demand business with Printseekers.com

Sep 6, 2022

The conduct of some Trump supporters is crude, sleazy and...deplorable

Oct 21, 2024

Students learn theater design through the power of play

Oct 21, 2024

MSN

Oct 21, 2024