Research Fellow in Experimentation for Future Cryogenic Machining Processes

University of Leeds

United Kingdom

January 3, 2022

Description

Research Fellow in Experimentation for Future Cryogenic Machining Processes

Do you want to join a multidisciplinary team of world-leading experts developing enhanced industrial machining processes of the future? Do you want to work on a project that cuts across tribology and manufacturing technology areas? Do you want to bring skills in designing novel equipment for understanding the fundamentals of cryogenic machining?

Currently the dominant approach for cooling and lubricating machining processes, such as drilling, milling and turning, is to use emulsion-based coolants (otherwise known as metalworking fluids) at high flow rates. There are many serious environmental, financial and health and safety reasons for reducing industry's reliance on emulsion coolants - an estimated 320,000 tonnes/year in the EU alone, up to 17% of total production costs, and over 1 million people are exposed regularly to the injurious effects of its additives which can cause skin irritation and even cancers. Serious environmental problems are also caused by the up to 30% of coolant that is lost in leaks and cleaning processes and which eventually ends up polluting rivers.

These issues have motivated extensive research efforts to identify more sustainable machining processes. There is growing and compelling evidence from preliminary studies that cryogenic machining with supercritical CO2 (scCO2) with small amounts of lubricant (Minimum Quantity Lubrication, MQL, referred to as scCO2+MQL machining) can provide a high-performing and more sustainable alternative. Current knowledge gaps in the relationships between key input and output variables, the reasons for variations in performance and concerns over the release of CO2, are preventing a major uptake of this technology by UK manufacturers.

You will take a lead in designing and developing an integrated open tribometer for fundamental study of the tribology and temperature distribution in a machining system. You will develop tribological experiments and machining science testing to investigate and refine technology which can ultimately enhance the productivity and cleanliness of future machining processes. The role will draw on your skills in designing and planning experiments, taking measurements, also processing and interpreting results.

You will establish tribological and tribochemical tests to establish why certain novel methods of cooling and lubrication are very successful, then transition this learning into machining trials to validate theories and demonstrate capability. The role will be based at the University of Leeds and will involve collaboration and on-site experimental work with the Advanced Manufacturing Research Centre (AMRC) in Sheffield. You will work with a second postdoctoral researcher and with an integrated academic and industrial project team to develop new learning and to disseminate the project findings via publications and presentations.

To explore the post further or for any queries you may have, please contact:

Professor Ardian Morina, School of Mechanical Engineering, University of Leeds.

Tel: +44 (0)113 343 2158 or email: A.Morina@leeds.ac.uk

OR

Dr Chris M Taylor, Advanced Manufacturing Research Centre with Boeing, Factory of the Future, The University of Sheffield.

Tel: +44 (0)114 222 6678 or email: C.M.Taylor@sheffield.ac.uk

Location: Leeds - Main Campus

Faculty/Service: Faculty of Engineering & Physical Sciences School/Institute: School of Mechanical Engineering Section: Institute of Thermofluids Category: Research Grade: Grade 7 Salary: £34,304 to £40,927 p.a. Due to funding restrictions, an appointment will not be made higher than £37,467 p.a. Working Time: 37.5 hours per week Post Type: Full Time Contract Type: Fixed Term (3 years (grant funding)) Release Date: Thursday 25 November 2021 Closing Date: Monday 03 January 2022 Interview Date: To be confirmed Reference: EPSME1065 Downloads: Candidate Brief

Apply Online

Similar Jobs

University of Leeds

United Kingdom 1 day ago

Add to favorites Read more...

Research Fellow in Machine Learning-enabled Optimisation of Cryogenic Machining Processes

Research Fellow in Machine Learning-enabled Optimisation of Cryogenic developing enhanced industrial machining processes of the future? sustainability goals of industrial processes? sustainable machining processes. to as scCO2+MQL machining) can provide a high-performing and more sustainable...

University of Twente

Netherlands Nov 5, 2021

Add to favorites Read more...

Postdoc position in powder bed additive manufacturing of metals

techniques for processing materials without any resins or binders, laser resolution of laser powder bed AM to produce tailored 3D micro-to-macro pore (micro)structural, and mechanical properties of materials. Strong material characterization As a member of...

Nothingham University

United Kingdom Nov 2, 2021

Add to favorites Read more...

Research Associate/Fellow in Composites Manufacturing (Fixed term)

Research Associate/Fellow in Composites Manufacturing (Fixed term) £27924 to £40927 per annum (pro rata if applicable) depending on skills and experience (minimum £31406 with relevant PhD). EPSRC Future Composites Manufacturing Research Hub (the Hub) and...

Add to favorites Read more...

Postdoctoral Fellowship: Impacts Of Nox And Sox On A Co2 Capture Process

Among the carbon dioxide (CO2) capture processes, pressure swing adsorption As part of the joint laboratory between Air Liquide (1) and the Laboratory of Reactions and Chemical Engineering (LRGP) (2), this study aims to experimentally...