PhD Studentship

Anglia Ruskin University

United Kingdom

October 24, 2021


Job Category

Teaching, Research & Scholarship

Vacancy Type

Fixed term contract

Fixed Term Duration

3 years

Employment Type

Full time



Faculty/Prof Service

Faculty of Business & Law

Ref No


Closing Date



  • advert (PDF, 105.99kb)
  • About ARU:

    Anglia Ruskin is a vibrant workplace and our University is recognised both nationally and internationally. We have ambitious plans for the future and we are determined that our students and staff will realise their full potential. Our main campuses in the cities of Cambridge, Chelmsford, London and Peterborough have been transformed with major capital investment. With an annual turnover of over £200m, we are a major force for higher education and one of the largest universities in the East of England.

    About the role:

    Data collected from wearable devices and the Internet of Things system can be utilised to create intelligently expanded end user healthcare portfolios. Analytics are required to extract relevant information from the large amount of complex data, and to translate this information into useful insights to assist decision making regarding diet, lifestyle and physical exercise.

    The project aims to promote healthy lifestyles and help improve the general state of health and wellbeing of the UK population. This project will collect health and wellbeing data from multiple sources, including wearable devices, interviews and self-reporting from Patient and Public Involvement (PPI) groups, social media platforms, and databases such as UK Data Service. These data will be analysed to monitor individuals' history of illness, lifestyle parameters, mental and psychological parameters, socioeconomic parameters, gender parameters, contextual parameters (work, location, etc.) and cultural parameters. Applying machine learning and advanced data analytics to the collected data, we could create digital twins of individuals. The digital twins have several functionalities: 1) The digital twins produce wellbeing profiles for the individuals, associating indicators with well- and ill-being. The profiles enable identification, comparison and monitoring trends among interviewed people. 2) The digital twins identify factors leading to ill- being and their causal links. 3) The digital twins feed the collected data into the machine learning models to experiment intervention, and to test effectiveness of personalised healthy living advice, including healthy eating, work/life balance, physical activity plan, etc.

    The outcome of this research will change the way we engage in eating, working and physical activity. It will also deliver personalised healthy eating, working and living advice to the public.

    Candidate requirements:

  • The candidate will have or expect to achieve d a postgraduate (Distinction) or equivalent in Computer Science, Engineering, Data Science, Statistics, Math, or a broad range of relevant backgrounds in Science / Engineering degree.
  • Having experiences and knowledge of machine learning, data mining, and artificial intelligence
  • Having strong mathematical or statistical background, with the ability to construct modelling and simulation
  • Having strong programming skills using R or Python
  • Having experience or ability of collecting data from multiple resources, including interviews with PPIs
  • Demonstrating ability of using SQL or other databases to store, manipulate, sort and make queries of data.
  • Having strong communication and writing skills in English
  • Demonstrating confidence in communicating and collaborating with industrial partners
  • Being self-motivated and having a strong interest in doing research
  • It is desirable that the candidate has a good understanding on healthy living and wellbeing profile.
  • Applicants must meet English language requirements, and the project expects an IELTS of 6.5 in order to be accepted for the PhD programme. Read more here.

    The successful candidate will be responsible for collecting data to create Digital Twins of real-world environments. The successful applicant will work closely with the research centres in Faculty of Business Law, including the Anglia Ruskin Innovation Centre with The Welding Institute, and Centre for Intelligent Supply Chain. The PhD candidate will be supervised by Prof. Ying Xie from Faculty of Business and Law, Anglia Ruskin University, and Prof. Barbara Pierscionek from Faculty of Healthcare, Education, Medicine and Social Care, Anglia Ruskin University. Ocado Technology will be the industrial partner of this project, to supervise the design, execution and analysis of digital twins' models, in collaboration with academic supervisors. Ocado Technology will also advise the PhD student and academic supervisors on feasibility of digital twins in practice.

    Applicants must be prepared to study on a full-time basis, attending at our Cambridge or Chelmsford campus, subject to UK Government Covid-19 movement restrictions.

    How to apply:

    Applications for the PhD Scholarship are made here. Please choose the course title “PhD with progression from MPhil School of Economics, Finance and Law”, Full Time, ARU Chelmsford Campus, R0177FCHE02D, 18/Jan/2022.

    In addition to the online application, please send the following documents to and . Please ensure that you make a note of the project title.

  • Certificates and transcripts from your postgraduate degrees
  • Your personal statement explaining your suitability for the project
  • Passport and visa or EU Settlement Scheme share code (if applicable)
  • Your CV
  • Two reference letters
  • For further information, please contact Prof. Ying Xie via

    We will review all applications after the submission deadline of 24 th October 2021. We will contact shortlisted applicants in the week commencing 1 st November 2021. Interviews will be held in the week commencing 8 th November 2021.

    Find out more about working with us.

    We offer an extensive range of benefits including a generous holiday entitlement, occupational pension schemes, training and development opportunities, travel to work scheme and a competitive relocation package. Visit our benefits page for full details.

    We value diversity at ARU and welcome applications from all sections of the community.

    Committed to being inclusive and open to discuss flexible working.

    Similar Jobs

    Anglia Ruskin University

    United Kingdom Sep 11, 2021

    Add to favorites

    PhD Studentship

    The project examines the critical roles that machine learning, big data analytics and artificial intelligence play in improving yard management in the In container ports/terminals, the container yard acts as a management is essential to...